Heuristic Computation and the Discovery of Mersenne Primes

Heuristic Computation and the Discovery of Mersenne Primes Heuristic Computation and the Discovery of Mersenne Primes “Where Strategy Meets Infinity: The Quest for Mersenne Primes” Introduction: The Dance of Numbers and Heuristics Mersenne primes are not just numbers—they are milestones in the vast landscape of mathematics. Defined by the formula: \[ M_p = 2^p - 1 \] where \( p \) is itself prime, these giants challenge our computational limits and inspire new methods of discovery. But why are these primes so elusive? As \( p \) grows, the numbers become astronomically large, making brute-force testing impossible. This is where heuristic computation steps in—guiding us with smart, experience-driven strategies. “In the infinite sea of numbers, heuristics are our compass.” Let’s explore how heuristics and algorithms intertwine to unveil these mathematical treasures. 1. Mersenne Primes — Giants of Number Theory Definition: Numbers of the form \( M_p = 2^p - 1 \...

Understanding Delta Function Approximations: Gaussian Delta Sequence (Heat Kernel)

Understanding Delta Function Approximations: Gaussian Delta Sequence (Heat Kernel) Matrix Space Toolkit in SageMath

Delta-Convergent Sequences — Refined Blog with SageMath Symbolics, Physics Insights, and Cleaner Code

In the previous blog, we understood the Lorentzian Delta Sequence (Cauchy Kernel). Let's take another step and explore the Gaussian Delta Sequence (Heat Kernel).

Why Study These Approximations?

Delta functions are central in many fields:

  • Signal Processing: Ideal impulse, filter response
  • Physics: Point charges/masses, Green's functions
  • Spectral Theory: Lorentzian profiles in resonance
  • Diffusion Models: Gaussians arise from the heat equation
  • Numerics: Regularizing singular integrals

Each kernel has a story to tell.

Gaussian Delta Sequence (Heat Kernel)

Formula \[ f_t(x) = \frac{1}{2\sqrt{\pi t}} .e^{-\frac{x^2}{4t}} \]

  • Smooth and fast-decaying
  • Bell-shaped
  • Natural from the heat equation

#Define the Function

var('x t')
f_gauss(x, t) = (1/(2*sqrt(pi*t))) * exp(-x^2 / (4*t))
f_gauss(x, t)

# Check Symbolic Integration
var('xi')
assume(t > 0)  # Ensure t is positive
integral(f_gauss(xi, t), xi, -oo, oo).simplify_full()

#Limit Evaluation at x → 0
limit(f_gauss(0, t), t=0)

#Alternative Approach: Use Numerical Evaluation
#If the symbolic engine struggles, try evaluating the function numerically at progressively smaller values of ( t ):

t_values = [0.1, 0.01, 0.001, 0.0001]
[f_gauss(0, t).n() for t in t_values]

#Integral Test (Distributional Behavior)
var('a b')
assume(a < 0, b > 0)  # Ensure a < 0 < b to match delta behavior
integral(f_gauss(xi, t), xi, a, b).simplify_full()

# Numerical Evaluation
# To see how the integral behaves for small ( t ):

import numpy as np
import matplotlib.pyplot as plt
import sage.all as sage

def gaussian_integral(t, a=-1, b=1):
    from math import erf, sqrt, pi
    return (1/2) * (erf(b / sqrt(4*t)) - erf(a / sqrt(4*t)))

# Test for different t values
t_values = np.logspace(-3, 0, 50)  # Log-spaced values from 0.001 to 1
integral_values = [gaussian_integral(t) for t in t_values]

# Plotting
plt.figure(figsize=(8, 5))
plt.plot(t_values, integral_values, marker='o', linestyle='-', color='blue')
plt.axhline(y=1, color='r', linestyle='--', label="Expected Limit (1)")
plt.xscale("log")
plt.xlabel(r"$t$")
plt.ylabel(r"Integral Value")
plt.title("Numerical Verification: Gaussian Integral Convergence")
plt.legend()
plt.grid(True)
plt.show()

# Plot the Gaussian Sequence
p1 = plot(f_gauss(x, 0.5), (x, -5, 5), color='red', legend_label='t = 0.5') + \
     plot(f_gauss(x, 0.2), (x, -5, 5), color='blue', legend_label='t = 0.2') + \
     plot(f_gauss(x, 0.05), (x, -5, 5), color='green', legend_label='t = 0.05')

p1.show(title='Gaussian Approximation to ฮด(x)', ymin=0, ymax=3)

# Compute First and Second Derivatives

var('x t')
f_gauss(x, t) = (1/(2*sqrt(pi*t))) * exp(-x^2 / (4*t))

# First derivative (approximating ฮด'(x))
f_gauss_prime(x, t) = diff(f_gauss(x, t), x)

# Second derivative (approximating ฮด''(x))
f_gauss_double_prime(x, t) = diff(f_gauss_prime(x, t), x)

f_gauss_prime(x, t), f_gauss_double_prime(x, t)

#Plot the Derivatives

p1 = plot(f_gauss_prime(x, 0.5), (x, -5, 5), color='red', legend_label="t=0.5") + \
     plot(f_gauss_prime(x, 0.2), (x, -5, 5), color='blue', legend_label="t=0.2") + \
     plot(f_gauss_prime(x, 0.05), (x, -5, 5), color='green', legend_label="t=0.05")

p1.show(title="First Derivative of Gaussian Delta Approximation")

p2 = plot(f_gauss_double_prime(x, 0.5), (x, -5, 5), color='red', legend_label="t=0.5") + \
     plot(f_gauss_double_prime(x, 0.2), (x, -5, 5), color='blue', legend_label="t=0.2") + \
     plot(f_gauss_double_prime(x, 0.05), (x, -5, 5), color='green', legend_label="t=0.05")

p2.show(title="Second Derivative of Gaussian Delta Approximation")

#Plotting the Integrated Sequences
p1=plot(integral(f_gauss(x, 0.1), x, -5, 5), (x, -5, 5), color='green', legend_label="Gaussian")
p1.show(title="Integrated Delta Approximations")

๐Ÿ’ก Try It Yourself! Now You can copy and paste directly into here Run SageMath Code Here

Physics Note
Appears in diffusion, heat kernels, quantum mechanics (e.g., wavepacket spreading).

Comments

Popular posts from this blog

๐ŸŒŸ Illuminating Light: Waves, Mathematics, and the Secrets of the Universe

Spirals in Nature: The Beautiful Geometry of Life