CSIR NET QUESTION Complex Analysis, Real Analysis, and a dash of Algebraic intuition with deep analysis (Round 1)
- Get link
- X
- Other Apps
πΉ Question 1: Complex Numbers – Argument
Let \( z = -1 + i \). What is the principal argument of \( z \)?
- A) \( \frac{3\pi}{4} \)
- B) \( -\frac{\pi}{4} \)
- C) \( \frac{\pi}{4} \)
- D) \( \frac{5\pi}{4} \)
πΉ Complex Numbers – Principal Argument
Given: \( z = -1 + i \)
Since \( z \) lies in the second quadrant, we calculate its argument accordingly:
π \( \tan^{-1} \left( \frac{\text{Im}(z)}{\text{Re}(z)} \right) = \tan^{-1} \left( \frac{1}{-1} \right) = \tan^{-1}(-1) \)
The angle corresponding to this is \( -\frac{\pi}{4} \), which lies in the fourth quadrant.
But for the principal argument (second quadrant), we do:
\( =Arg(z) = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \)
✅ Correct Answer: A
Other Options:
- B: \( -\frac{\pi}{4} \) → applicable to 4th quadrant
- C: \( \frac{\pi}{4} \) → 1st quadrant
- D: \( \frac{5\pi}{4} \) → 3rd quadrant
❌ So option A is logically the best fit!
MORE DEEP
πΉ Step-by-Step: Argument of a Complex Number
Definition: Argument of a complex number \( z \) is the angle made by the point \( z \) in the complex plane with the positive x-axis (real axis), measured anticlockwise.
π§ Step 1: Location of \( z = -1 + i \)
- \( x = -1 \) → Left of origin
- \( y = +1 \) → Above origin
✅ So, the point lies in the Second Quadrant
π― Step 2: Calculating the Angle
- Use: \( \tan^{-1} \left( \frac{y}{x} \right) = \tan^{-1} \left( \frac{1}{-1} \right) = \tan^{-1}(-1) \)
- This gives angle \( -\frac{\pi}{4} \), but that's in the Fourth Quadrant
❗ We need the Principal Argument, which must be between \( 0 \) and \( \pi \) in the Second Quadrant
✅ Final Formula
So we use: \( Arg(z) = \pi - \left| -\frac{\pi}{4} \right| = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \)
π Summary of Options
- A: \( \frac{3\pi}{4} \) – ✅ Correct
- B: \( -\frac{\pi}{4} \) – ❌ Fourth Quadrant
- C: \( \frac{\pi}{4} \) – ❌ First Quadrant
- D: \( \frac{5\pi}{4} \) – ❌ Third Quadrant
Final Answer: A
πΉ Question 2: Real Analysis – Continuity
Which of the following functions is discontinuous everywhere?
- A) \( f(x) = x^2 \)
- B) \( f(x) = \sin(1/x),\ f(0) = 0 \)
- C) Dirichlet function: \( f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \)
- D) \( f(x) = |x| \)
✅ Correct Answer: C (Dirichlet function)
Dirichlet function:
\( f(x) = \begin{cases}
1 & \text{if } x \in \mathbb{Q} \ (\text{rational}) \\
0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \ (\text{irrational})
\end{cases} \)
π Reason:
- Both rationals and irrationals are dense in every interval of real numbers
- So, in any neighborhood, \( f(x) \) jumps between 1 and 0 repeatedly
- Limit doesn’t exist at any point → discontinuous everywhere
❌ Incorrect Options:
- A) \( f(x) = x^2 \) – Smooth polynomial → continuous everywhere
- B) \( f(x) = \sin(1/x),\ f(0) = 0 \) – Oscillates near 0 → discontinuous only at 0
- D) \( f(x) = |x| \) – “V” shape at origin → still continuous everywhere
π° Final Answer: C
πΉ Question 3: Linear Algebra – Diagonalization
Which matrix is diagonalizable?
- A) \( A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \)
- B) Identity matrix: \( A = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
- C) Zero matrix: \( A = 0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \)
- D) \( A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \)
✅ Correct Answer: B (Identity matrix)
Identity matrix: \( A = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
π Reason:
- Already in diagonal form ✅
- All eigenvalues = 1 ⇒ algebraic multiplicity = geometric multiplicity
- Eigenvectors span the entire space ⇒ fully diagonalizable
❌ Other Options:
- A) \( \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \) – repeated eigenvalue but lacks enough independent eigenvectors
- C) Zero matrix \( \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \) – diagonalizable, but trivial case
- D) Rotation matrix \( \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \) – eigenvalues are imaginary ⇒ not diagonalizable over \(\mathbb{R}\)
π° Best choice: B